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A rigorous solution of  the problem of determining the effective thermal conductivity tensor of  a composite 

material with regularly distributed spheroidal interstitials is presented. 

1. An approach to the investigation of the conductivity of composites that consists in simulating a real 

material by an equivalent, to some extent, regular structure has been used beginning with the pioneering works 

[1, 2 ]. A characteristic feature of this model is the possibility in principle of constructing a rigorous solution of the 

corresponding periodic boundary-value problem. Thus, for a composite with spherical interstitials distributed at 

three-dimensional lattice sites such solutions have been obtained in [3-6 ]. As is evident from the numerical and 

experimental data presented in these works, a rigorous approach to the solution of the problem is especially 

necessary for composites with a high concentration of highly conducting interstitials, where approximate methods 

do not provide adequate accuracy of the calculations. For this class of materials a decisive effect on the macroscopic 

properties is rendered by the interaction of the interstitials, and an adequate description of this interaction is 

possible only within the framework of a rigorous approach. 

As is shown in [7, 8 ], the conductivity of a composite is affected considerably by the shape of the disperse 

phase particles as well. However, works containing a rigorous approach to the investigation of composites of regular 

structure with particles different from spherical are lacking in the literature up to now. In the present work a method 

for determining the effective thermal conductivity tensor of a regular composite reinforced by particles in the form 

of stretched spheroids that is based on a rigorous solution of a periodic three-dimensional boundary-value problem 

of thermal conductivity is presented. The mathematics developed might also be employed for solving a number of 

other problems, in particular, for investigating a composite with anisotropic phases [9 ]. 
2. The composite material considered consists of an isotropic matrix with identical particles in the form of 

stretched spheroids distributed in it. The particles are distributed in such a way that their centers form a three- 

dimensional orthogonal lattice with the lattice constants a 1, a2, and a 3 along the Ox, Oy, and Oz axes of a Cartesian 

coordinate system. The semimajor axes of the spheroids are parallel to the Oz axis, and the origin of the coordinate 

system coincides with the center of one of the interstitials. Let us introduce a stretched spheroidal system of 

coordinates associated with this interstitial: 

x + i y = d ~ ~ e x p ( i ~ o ) ,  z = d ~ / ,  ~ =  (~2_ 1) ~ ,  ~ =  (1-~72) 1/2" 

1___~<o~, - 1 _ < ~ 7 < 1  , 0_<~o<2: r .  (1) 

The spheroid surface coincides with the coordinate surface ~ -- ~0, and the spheroid surface with the coordinates 

of its center (pal, qa2, sa3) is given by the equation ~pqs = ~0, where (~pqs, rlpqs, ~pqs) are local spheroidal coordinates 

corresponding to the Cartesian ones Xoq s = x -  pal,  Ypqs = Y - qa2, Zpqs = z - sa3. 

Let the composite medium be in the field of a constant external thermal flux. Then the temperature field 

T in the bulk of the composite satisfies the Laplace equation 

AT = 0 (2) 
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and due to the periodicity of the structure it is a quasiperiodic function of the coordinates 

T (r - a i el) + K i = T (r) (i = I, 2, 3), (3) 

where K i are certain constants. The conditions of an ideal thermal contact are assumed to be satisfied on the phase 

interfaces: 

[T]~pqs=~O = [q.npq s ]~pqs=~ 0 = O, (4) 

where If] - - f + - f _  and the signs + and - denote quantities associated with the interstitials and the matrix, 

respectively. Thus, the problem consists in the integration of Eq. (2) under conditions of conjugation (4) and 

periodicity (3). 

3. In constructing the solution of boundary-value problem (2)-(4) we use an approach suggested in [5] 

and consisting in reducing the original problem to that a composite layer of thickness a 3 containing a plane lattice 

of interstitials; the solution for the layer is sought in the class of doubly periodic harmonic functions. Let T_ be 
represented as 

T_ = C . r  + T 1 (r) ,  (5) 

where C -- C#i is a constant vector; T 1 is a triply periodic solution of (2). Let us choose a layer of composite 

material bounded by the planes z -- h and z3 = a - h and containing a biperiodic system of interstitials indexed 

pq0. T 1 will be constructed as a solution that is periodic in x and y and satisfies the following conditions on the 

plane faces of the layer: 

OT 1 OT 1 
r l  l'=c-h = rtl+=h; -YYz z=c-h - ~ I,=h ( 6 )  

The solution in the layer is represented in the form 

t * 

T 1 = Fz + E AtsFts + ~, (B+nE+n + BmnEmn), (7) 
t=O s=-t m,n 

where F, Ats, Bmn, and Bran are undetermined constants; Emn = exp[+_Tmn z + i(amx +tinY) ], am 2~m/al, fin 
Z~n/a2, ?m. = ~ + f . .  

In (7) F~ts are doubly periodic solutions of (2), external with respect to the system of poles (pal,qa2,0) in 

the plane z = 0: 

F* = = ~ts _+- ts ~, Fts(rpq 0,  d) (-T- 1) t+s ~] -mnl3"mn, z ~ - T - d ,  
p,q m,n  

(8) 

where 

~,~ ( -  1) ~ 

t =  1,  2 ,  . . . ,  Isl ~ t 

t+I /2  2 ~  t - s - 1  
It+~a (rm.d) ~ rm~ (~. - i ~ , 

�9 + , +  . 

, 3ala 2, ~0o=0 ( t~  1, s ~ O ) ;  

Fts(r, d) are external particular solutions of (2) in stretched spheroidal coordinates: 

( 2 ) t+l (t - s) ! s s 
Fts ( r ,  d) = (t + s) I Qt (~) Pt (r/) exp (i s ~o). (9) 
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The procedure for constructing the system of functions (8) and representing them by Fourier series is, on the 

whole, similar to that described in [5 ]. The second part of expression (7) is the representation of the general doubly 

periodic solution of (2) for the layer by a double Fourier series. 

Let us choose the constants B~n and Bran in such a way that they ensure that the conditions of periodicity 

of the solution T1 in z are satisfied. For that we substitute (7) into conditions (6) with account for the representation 

of F~t s by Fourier series (8). By equating coefficients of the same harmonics on both sides of the equations we come 
to the following relations: 

+ ~ t 1)t+s ts 
Bran = Amn ~ (-T- Ats ~mn , 

t=l s=-t  

16~r 
Amn = [exp @ran c) - 1 ]-1 F = 3ala2a--- ~ AIO o 

(lO) 

A second group of relations is obtained by satisfying the conditions of conjugation in the matrix and the 

interstitials. It should be noted that due to the periodicity of the problem it is sufficient to satisfy the conditions 

(4) for the interstitial with p = q = s = 0. The temperature in this interstitial is represented by the series 

t 
T+ = ~ Dts.lts (r ,  d ) ,  (11) 

t=0 s=-t  

where 

fts (r ,  d) = (t + s) [ e t  (~) Pt (7/) exp (i s ~o) 

are internal particular solutions of (2). 
Transformation of the Fourier series in (7) to spheroidal coordinates is realized by means of the relations 

t 
Em n ~ (_+ .t+s._ts . (12) = 1) Mmnl t  s (r ,  d) ,  

t=O s=-t  

where 

(r-Za a) t+s . -s  MtmSn v~  (t + 1/2) 2 t+l/2 = It+l/2 (Ymn d) Ymn (fin - l am) . 

The representation of the functions ~s  in the coordinates ( ~, ~/, ~o) is based on the use of the following 

addition theorems for particular solutions of the Laplace equation in spheroidal coordinates: 

k 
Fts (rpqs, d) = ~ N~t- ~ l  f k l ( r ,  d) , rpq s = r + Rpqs, (13) 

k=O l=-k 

where 

Nt~ = Nt~ (1) ( -  1) k+/~ (k + 1/21 ~ ~ X 
v=0 

( t+k + v + 2)v Yt+k+ Xv (Rpqs) (14) 
X v ! F ( t + v + 3 / 2 )  F ( k + v + 3 / 2 ) ,  Rpq s > 2 d ;  
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Rpq s is arbitrary at d / d >  1; ~t(r) = rt/(t + s)!-~(~/) exp (is~o) are particular solutions of the Laplace equation in 

spheroidal coordinates; (n)m = n(n + 1) ... (n + m - 1). The transition formula (13), (14) is of independent interest, 

similar relations being known only for the case of coaxial spheroids [10, 11 ]; the expression N~'k 0) can be obtained 
by taking the limit in the addition theorem for the spheroidal wave functions [12]. Substituting (13) into (8) we 

obtain 

. (_1,, 
Nt~ = Nt~ (2) = ( -  1) k (k + 1/2) v'F ~ x (t + k + 2v + 1/2) ~ ])  ) 

v = o  ] = o  . (v - j ) .  
x 

( t+k+v-] )vF(t+k+2v-]+ 1/2) ~ ~ )  
• F F - + ~ , Z ~ / - T 3 / - 2 5 [ ' ( / ~ - + v -  ] + 3 / 2 )  Ft+k+Zv (P'pqs, , 

k 
F~s = Fts (r ,  d) + E 

k=O l=-k  
A~tk -l* fkt ( r ,  d) ,  (15) 

where 

F 

s -  l* Utk = Z N~t[ 1(2)+ E N~tk l(1) 
P,q P,q 

PpqO <2d PpqO> 2d 

the prime denotes the absence of the term with p = q = 0. Taking into account (14) the calculation of NStk l* is 

reduced to summing up series of the form ~ Y~v( pq 0), for which lechniques for improving convergence have been 

highly developed [13 ]. P,q 
Considering (10), (12), and (15) the expression for T_ takes the form 

T _  = 2 [ (C 1 - i C 2 ) f l  1 - (C 1 - i C 2 ) f l , _  1 + (F + C 3 ) f l  0 ] + 

t ~ t ~ k ts (16) 
+ E E AtsFts + E fts E Akldkt,  

t=I s=-t t=0 s=-t k=l t=-k 

where 

= C;I .  + t(_ + ( -  1)t+ l X 
r e . r /  

Substituting (16) and (11) into the first of conditions (4) and equating the coefficients of the same harmonics one 

obtains 

2t+l Qt (80) + ~ Ak l dk t Dts, G+ Ats ~ = 
Pt (to) k=l l=-~ 

where G = 2~) [(C1 - iC2)cSls - (C1 - iC2)6s I + (F3 + Clo)5~ 
Similarly, from the second condition of (4) one finds 

J 

2t+ 1 OS k 
,(80) 2Ak,4= D. G + Ats "-d - - '  + 
s k=l  l=-k  

et (80) 

Eliminating the unknowns Dts from the last two equations one arrives at the following infinite system of linear 

algebraic equations for Ats: 
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Ats 2t+ 1 
i 

(to) (to) 
K - -  i 

$ $ 

et (to) et (to) 

k ls (17) 
+ ~ Akldkt= - G. 

k=l l=-k 

The final expressions for Dts are 

_ Ats 2 
Dts ( x ~ l )  ( d )  

2t+ 1 QS ~$ ' 
t (~0) t (~0) 
$ $ 

Pt (~0) Pt (~0) 

(18) 

Analysis of the coefficients (17) with account for expressions (14), (16) and the estimates of the double 

series of [5] proves that it is a system of normal type, provided adjacent interstitials do not touch (2d~ < a3, 

2dr-  < rain(a1, a2)) and, consequently, that it is possible to obtain its solution in an arbitrary approximation by 

the reduction method. 

4. The tensor of the effective composite material thermal conductivity coefficients A of the composite 

material is determined from the relations 

( q ) = - A ( V T ) ,  A = { 2 q } ;  (19) 

where < ~  = i / V f  fdV, V is a representative volume of the composite. Due to the regularity of the structure it may 
v 

be a parallelepiped with sides al, a2 and a 3 that contains one interstitial. For calculating <VT> the gradient theorem 

is used: 

f V ~ ( r )  d V =  f cI,(r) dS .  
v s 

We obtain (20) 

V ( V T ) =  f V T d V =  f VT_ d V +  f VT+ d V =  f T_ d V -  f T_ dS + f T+ dS ,  
v v_ v+ z s_ s+ 

where ~] is the surface of the plane faces of the parallelepiped; S is the surface of the interstitial. Taking into 

account equality of the temperatures at the phase interface and the periodicity of the solution in the matrix it is 

easily found that <VT> = C, i. e., the vector C has the meaning of the average temperature gradient. Averaging of 

the flux q gives 

V ( q ) = f q_ dV + f q+ dV = - 2_ f VT_ dV - 2+ f VT+ dV.  
v v+ v v+ 

Considering (20), V<q> = - ; I _ < V T > -  [2 ]fT+dS. 
Calculating the integral over the spheroid surface ~ = ~o, one finds 

- ( q )  = 2 _  ( V T )  + [21 2f-Re [e3 DlO + (e 1 - ie2) D ] l l .  (21) 

Since the components of the vector C enter the right-hand side of system (17) as parameters, relations (17), (19), 

and (21) are sufficient for determining all the components of the effective thermal conductivity tensor. In particular, 
analysis of the system gives 2ij = 0 for i ~ j which corresponds to the composite material structure considered. For 
the nonzero components of the tensor A with account for (18) one obtains the expressions 

23a 4./" 
~--0 -- 1 -  C----~AIo' 

211 8f 222 8f Im (22) 
20 -- 1 + C----l- ~ Re A l l ,  -~0 = 1 - C - - ~  A l l '  
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TABLE 1. Dependence of 211 =/!,22 and 233 on x and f for a Composite with R = 2, p~ la l  = p 2 / a 2  = pala3 

f /r 
0 2 10 20 100 1000 

1.074 
0.1 

0.2 

0.3 

0.4 

0.5 

0.845 

0.876 

0.712 

0.752 

0.591 

0.630 

0.478 

0.510 

0.367 

0.392 

1.084 

1.153 

1.168 

1.239 

1.255 

1.331 

1.345 

1.430 

1.441 

1.215 

1.331 

1.485 

1.668 

1.830 

2.054 

2.032 

2.532 

2.063 

3.180 

1.246 

1.410 

1.565 

1.832 

1.994 

2.333 

2.629 

2.991 

3.875 

3.978 

1.275 

1.496 

1.643 

2.013 

2.162 

2.652 

3.000 

3.552 

5.161 

5.076 

1.282 

1.520 

1.663 

2.062 

2.206 

2.744 

3.104 

3.716 

5.635 

5.422 

where R = ~0/~0 is the ratio of the spheroid axes. Only the first unknowns of system (17) enter relations (22), 

which ensures sufficient accuracy of the results when keeping even a small number of equations in the system. 

5. Some results obtained in implementing the method described on a computer are presented here. The 

computation was carried out by keeping unknowns up to the index t =13 in the infinite system, which ensured 

satisfaction of boundary conditions (4) with an error less than 1% over the whole range of parameter changes 

considered. The method is simple enough from the point of view of numerical realization, the most complicated 

matter being the calculation of the coefficients of the matrix of the system since they are double series. The 

computation being prepared and performed properly, it takes no more than 1-2 min of AT 286/287 computer time 

to solve the problem. Moreover, the above sums, once calculated for given ratios of the structure parameters f / a l ,  

a2/al,  and a3/a 1, may be used for calculating the macroscopic thermal conductivity of the composite for arbitrary 

values of f and x. 
A characteristic feature of the material considered is anisotropy caused both by the structure of the lattice 

of interstitials and by their shape. Moreover, even in the simplest case where the lattice constants ai are proportional 

to the spheroid semiaxes Pi, anisotropy turns out to be rather substantial. Thus, Table 1 gives the components of 

the tensor A calculated by the method described above as a function of the ratio of properties x and the volume 

share of interstitial f with R = 2. In all the tables the upper values correspond to ;t11/2o = 222/20, and the lower 

ones to 233/20. As is seen from the table, there is anisotropy growth with increase in x; on the other hand, at large 

x and a concentration near the maximum q-- 0.5) the composite is practically isotropic. 

It is of interest to compare the results obtained by us with those of calculations carried out by other 

methods. Thus, formulas for calculating the components 211 and 233 of a composite with unidirectional spheroids 

as a filler are presented in [7 ]. Results of a comparison for some parameter values are given in Table 2. Since in 

[7 ] the structure of the composite is not patently stated, the condition of proportionality of Pi and a i has been 

chosen, as in the previous case. The table shows that at x = 0 (a porous material) there is rather good agreement 

for 233 over practically the whole range of considered R and f, whereas for 211 already at R -- 3.0 and f--  0.3 the 

divergence is about 20~ ,  and with growth of these parameters, it increases. On the other hand, for a composite 

material (~c = 20) the best agreement is for '~-11; thus at f -- 0.4 and R -- 5 the divergence is 22 ~ ,  whereas the 

compared values ~-33 differ by more than twofold. For a highly nonuniform material (x -- 1000) the results of the 

calculations are comparable only at a low (<0.1) concentration of the filler and moderate values of R. So, the 

analysis presented makes it possible to establish the limits of applicability of approximate approaches and to 

ascertain the class of materials in predicting the properties of which a rigorous approach is necessary: highly filled, 

highly nonuniform (e.g., diamond-polymer) composites are such. 
It should be noted that the comparison described is given for just one relation between the lattice parameters 

and the particle geometry; naturally, its variation affects the composite properties. As is seen from Table 3 (and 
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TABLE 2. Comparison of Values of 211 and 23a Calculated by Means of Formula (22) and by the Method of [7 ] 

f=0.1 f=0 .2  f=0 .3  " f=0 .4  f=0 .5  
R x 

1.5 

3.0 

5.0 

20 

1000 

20 

I000 

20 

1000 

(22) [7] 

0.850 0.838 

0.870 0.869 

1.258 1.295 

1.353 1.460 

1.298 1.365 

1.431 1.642 

0.840 0.820 

0.882 0.887 

1.235 1.254 

1.488 1.804 

1.268 1.311 

1.655 2.576 

0.837 0.811 

0.885 0.894 

1.229 1.238 

1.537 2.136 

1.259 1.295 

1.816 4.503 

(22) [7] 

0.718 0.678 

0.743 0.736 

1.588 1.801 

1.739 2.249 

1.649 2.242 

1.914 3.375 

0.705 0.643 

0.759 0.772 

1.546 1.676 

1.957 3.043 

1.673 2.055 

2.281 7.596 

0.701 0.624 

0.764 0.786 

1.538 1.620 

2.037 3.664 

1.621 1.992 

2.554 16.27 

(22) [71 

0.598 0.519 

0.621 0.600 

2.026 2.700 

2.200 3.562 

2.252 7.198 

2.518 13.92 

0.584 0.470 

0.638 0.654 

1.967 2.399 

2.519 4.751 

2.168 5.797 

3.088 35.36 

0.579 0.415 

0.643 0.675 

1.956 2,256 

2.644 5.509 

2.145 4.944 

3.557 66.38 

(22) [7] 

0.486 0.365 

0.502 0.450 

2.670 4.173 

2.800 5.461 

3.165 83.77 

3.365 146.1 

0.470 0.305 

0.518 0.529 

2.594 3.610 

3.272 6.826 

3.054 47.82 

4.297 209.2 

0.464 0.267 

0.522 0.560 

2,578 3.328 

3.471 7.564 

3.025 28.41 

5.170 246.0 

(22) [71 

0.376 0.216 

0.384 0.310 

3.673 6.211 

3.397 7.740 

5.717 

4.765 

0.358 0.155 

0.398 0.387 

3.813 5.431 

4.434 9.069 

5.567 

6.578 

0.348 0.115 

0.403 0.426 

3.375 5.021 

4.766 9.700 

5.545 

8.605 

TABLE 3. Dependence of the Thermal Conductivity of a Composite (x = 1000) with a Cubic Lattice of Interstitials 

on Their Geometry, f = 0.1 

R 
K 

1.0 1.25 1.50 1.75 2.0 2.25 

10 

20 

1000 

0.857 

1.052 

1.202 

1.255 

1.332 

0.851 

0,868 

1.075 

1.080 

1.228 

1.282 

1.263 

1.338 

1,304 

1.410 

0.846 

0.875 

1.074 

1.084 

1.217 

1.325 

1.248 

1.401 

1.284 

1.506 

0.841 

0.881 

1.073 

1.086 

1.209 

1.369 

1.238 

1.471 

1.271 

1.662 

0.838 

0.885 

1.072 

1.089 

1.202 

1.416 

1.229 

1.550 

1.260 

1.768 

0.834 

0.888 

1.072 

1.091 

1.197 

1.471 

1.223 

1.650 

1.252 

1.983 

from a comparison with the above mentioned data, as well), such an effect is very substantial. Therefore in 

simulating a real material it is important to choose parameters that would take into account its structure to the 

utmost. 

Thus, in this investigation the problem of determining the effective thermal conductivity tensor of a granular 

composite material reinforced by regularly distributed spheroidal particles has been solved in a rigorous 

formulation. It should also be noted that the supposition, initially adopted, of the orthogonality of the lattice of 

~nterstitials is not fundamental since all the results are easily generalized to the case of nonorthogonal structures. 
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An investigation of the thermal conductivity of a composite with a filler in the form of compressed spheroids may 

be carried out in a similar way; the problem consists only in establishing the relations analogous to (8), (12), and 

(13). 

N O T A T I O N  

T, temperature, al, a2, a3, lattice constants; el, e2, e3, Cartesian unit vectors; (x, y, z), Cartesian 
coordinates; (~, r/, ~), stretched spheroidal coordinates; 2, thermal conductivity; x = 2+/2_; q = -2VT, thermal 

flux vector; f = V+/(V+ + 11-), volume share of interstitials; npqs, unit vector of the normal to the surface of the 

pqs-th interstitial; 2d, interfocus distance; Pl = Pz = d~o, P3 = d~o, semiaxes of a spheroid; Iv(z), modified Bessel 
function of the first kind; /~t(z), Q~t(z), associated Legendre functions of the first and second kind, respectively; 

F(z), gamma-function; ~/, Kronecker symbol. 
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